If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(15)^2+(x)^2=18^2
We move all terms to the left:
(15)^2+(x)^2-(18^2)=0
We add all the numbers together, and all the variables
x^2-99=0
a = 1; b = 0; c = -99;
Δ = b2-4ac
Δ = 02-4·1·(-99)
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{11}}{2*1}=\frac{0-6\sqrt{11}}{2} =-\frac{6\sqrt{11}}{2} =-3\sqrt{11} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{11}}{2*1}=\frac{0+6\sqrt{11}}{2} =\frac{6\sqrt{11}}{2} =3\sqrt{11} $
| (n/3)+(3/4)=(5/6)n-1 | | 5x+(1.04-5x)=1.04 | | -2(5t-2)+8t=5t-2 | | -v+29=174 | | 12+(t-5)=0 | | 115/30=x/6 | | 50-y=269 | | -x/5-46=-39 | | -5(y+3)+3(3y-7)=3(y-4)+10 | | x^2/3-4=5 | | -4w+5=w+2-6w-4w+5=w+2-6w | | 15-(6-7r)=2+6r | | X+0.09x=140 | | 8/11n=564/11 | | 8y+7=3y-4 | | 4x+3(2x-5=45 | | -2.4y+5=29 | | 2/3-(n*5/8)=7/12 | | 2t+5=35 | | 7x+149=180 | | 9x+4x=63 | | 9g+11=-13 | | 12p-8=6p+5 | | 1/3(y-3)=1/4(y+4) | | 11x=100*12 | | 0.02(y-4)+0.12y=0.04y-0.01(20) | | -62+62=-23p-15p | | 2n=242/5 | | x+24=36;x | | .72727(n-10)=64 | | 3x+4=(3x+2) | | r^2-5r+6=5 |